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Abstract 

The  use  of  Kalman  filters  to  generate  time  scales 
has  been  well  documented  in  the  literature.  The 
typical  "Time"  Kalman  model  used  for  the  commercial 
cesium beam standards is the  superposition  of  white 
noise  frequency  modulation (FM) and  random  walk 
noise FM. These  processes  are  considered  to be 
continuous  and  usually  sampled  at  regular 
intervals.  The  sample  data  are  the  differences in 
clock  readings  between  a  reference  clock  and  each 
of the  other  clocks  In  the  time  scale  system. A 
Kalman  filter  can  estlmate  both  the  time  and 
frequency  corrections for  each  clock  in  the  scale. 

There  are,  however.  other  options  for  time  scale 
operation.  One  can  integrate  the  frequency 
correction  element of the  Kalman  state  vector  for  a 
clock in the scale  to  obtain  a  new and  different 
time  scale.  Also,  one  can  re-cast  the  entire 
Kalman  model  in  terms  of  frequency  rather  than 
time. The  input  (measurement)  data  for  this  Kalman 
filter,  then, is exactly  the  first  (time) 
difference of the  data  discussed  above  for  the 
"Time"  Kalman. As one  might  expect,  however,  each 
of these options  provides  different  performance  in 
the  resulting  time  scale.  While  this  has  been 
pointed  out  before.  the  present  paper  details  the 
various  scale  performances  between  measurements  and 
provides  an  insight  into  the  different  performances 
based on computer  simulation  studies.  For  example, 
the  "Time"  Kalman  filter  displays  discrete  steps  in 
the  time  corrections  where  the  "Frequency"  Kalman 
filters  are  continuous  (being  the  integral of  a 
bounded  process). Depending  on  whether  one is most 
interested  in  minimizing  the RMS  time error or 
minimizing  the  Allan  Variance,  one  chooses  the  one 
time  scale  over  the  other. 

In a  more  fundamental  sense,  FREQUENCY is  the  basic 
quantity  which  is  measured  in  the  laboratory  while 
TIME is subject  to  many  conventions  and  exhibits 
unbounded  errors.  In fact,  as  realized  today,  time 
is a  defined  quantity  (dependent  upon  algorithms, 
definitions and procedures)  and  not  intrinsic  to 
the  atomic  clocks used to  generate time.  For  these 
reasons the frequency  Kalman  algorithms  should be 
used for  the  realization  of  primary  time  scales 
since it  is frequency,  not  time,  which  has  a 
physical  basis. 

I. Introduction 

The  literature  contains  several  papers  on  the  use 
of  Kalman  Filters  in  the  establishment of time  and 
frequency  standards [1.2.3.41. The  typical  "time" 
Kalman  model is based on  commercial  cesium beam 
frequency  standards.  Specifically  the  models  are 
the  superposition of white  noise  frequency 
modulation (FM) and  random  walk noise FM. 

While  several  researchers  have  reported  the 
existence  of  linear  frequency  drifts,  typically  the 
establishment  of  a  statistically  significant  drift 
requires  measurements  extending  over  an  appreciable 
fraction of  the  clock's life  expectancy.  This 
paper ignores  linear  frequency  drift.  For  times 
shorter  than 100 seconds or so other  model  elements 
become  important,  but  we  ignore  them  also  since 
most  time  scales  sample  data at longer  intervals. 

11. The  Time-Kalman  Model 

Jones  and  Tryon [1,2] have  shown that  the 
individual  Kalman  noise  models  can  be  written  in 
the  form: 

where X(t)  and  Y(t) are  the  continuous  time  and 
frequency  (approxim3tely)  errors  of  a  clock,  and 
E(t) and q(t) are  independent  (band  limited)  white 
noises.  Jones  and  Tryon  also  pointed  out  that 
there  are  actually  correlations  between  these  noise 
terms  which  can  become  significant  if  the  time 
interval, T, becomes  too  large.  For  the  clocks 
considered  here,  these  correlations  can  be  ignored. 
The  idea  here  is  that  X(t)  and  Y(t) are  continuous 
random  processes  which  can  be  sampled  at  arbitrary 
intervals, t and tfT. (For a  more  complete 
discussion  see  Jones  and  Tryon [1,2].) 

The  covariance  matrix  of  the  driving  noise  terms 
is [l] 

for  sufficiently  small T. 

The  state  vector  for  an  ensemble  of M clocks is 
obtained  by appending  the  two  state  elements  of 
each  clock  into  a  column  vector of  length 2Y.  The 
state  transition  matrix is a 2M by 2M square  matrix 
consisting  of  the 2 by 2  blocks  for  the  state 
transition  matrices  along  the  main  diagonal,  with 
off-diagonal  blocks  being  zeros.  Sinilarly,  the 
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ensemble  covariance  matrix  of  the  driving noise 
terms is a 2M  by 2H square  matrix  formed  from  the 
M 2 by 2 individual  blocks,  with  the  off-diagonal 
blocks  being  zeros. 

The  measurements  consist  of  time  differences 
between  clock 111 (the  reference clock)  and  each of 
the  other  clocks in  the  ensemble.  Although  each 
"measurement" in  the  simulation  studies  was  treated 
separately, an  equivalent  procedure [51 would  be to 
define  the H(t)-matrix  in  the  form: 

( 
( 1  0 -1 0 0 0 0 . .  1 

) 
(1 0 0 0 -1 0 c l . . )  
( 1 

( 1 
H(t)=(l 0 0 0 0 0 -1. . )  

. . . . . . . .  I 
) 

(. . . . . . . . .  ) 

which  is  an  M-l by 2M matrix  for  the  M-l  independ- 
ent measurements. A l l  primary  time  scales  have  one 
more  unknown  than  they  have  independent  measure- 
ments  since  absolute  time  accuracy is impossible. 

111. Estimated  State  Vector  for  the  Time-Kalman  Filter 

Xe assume  that  every T seconds  a  complete 
measurement  of M-l clock  comparisons is performed. 
These  comparisons  allow an up-date  of  the  estimated 
Kalman state vector.  Of  course,  the  time  and 
frequency  errors  are  thought  to  evolve  continuously 
even if  they were  only  observed  every 'c seconds. 
Kalman  theory  allows one to  estimate (i.e., 
forecast)  these  subsequent  states  even  though  the 
comparisons  bztween  clocks  were  not  performed 
continuously.  Figure  1  displays  the  estimated 
Kalman  state  vector  for  clock  %l  and  the  "actual" 
clock U 1  error for a  simulated  time  scale. 
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FIG. 1 ,  SIMULATED CLOCK ERROR AND KRLHRN T I n E  STATE 

The  simulated  time  scale  consists  of  five  "clocks" 
perturbed by various  levels of white  noise  FM and 
random walk noise FM.  The clocks  with  the  lowest 
uhite FM had the  highest  random  walk FM, and 
conversely.  The  reference  clock,  clock #l, had  the 
lowest  level  of  white  FM so that  it  would  be the 
most  stable clock  between  measurements.  Figure 2 
displays  the  theoretical  Allan  variances  for  the 
simulated  clock  data.  Of  course, it is impossible 
to generate  continuous  noise  on  a  digital  computer, 
but the  noise  was  generated  every  l/lOth T spacing 
(ten  points per  clock  per  measurement). Hence,  the 
Allan  Variances  extend  to 0.11 units on the plots. 

Each  measurement  cycle  provides  new  information  for 
the  estimated  Kalman  state  vector,  and  hence  abrupt 
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changes  occur  (see Fig. 1 ) .  Forecasts  for  the 
state vector  prior  to  the  next  measurement  are 
obtained  from  the  frequency  element  of  the 
estimated  state  vector.  Since  the  forecast 
frequency  elements  of  the  state  vector  are  constant 
between  measurements,  the  forecasts  in Fig. 1  are 
segments  of  straight lines.  Of  course,  the 
simulation  procedure  allows  one  to  observe  the 
individual  "clock"  error,  uncontaminated by the 
instabilities  of the other  clocks.  The  absolute 
time  scale error  for  Fig. 1 is just  the  difference 
between  the  two curves. Clearly, for forecasts 
following  the clock comparisons,  the  other  clocks 
have  essentially  no  affect  on  short  term  varia- 
tions, and  individual  clock  instabilities  are 
whatever  they  are.  Hence  for  best  time scale  reso- 
lution,  the best reference  clock is the  most  stable 
clock  in  short  term. 

It is not surprising  that  the  abrupt  changes  in  the 
estimated  time  error  cause  observable  effects  in 
the  Allan  Variances  (see Fig. 3 ) .  Comparing  Figs. 
1 and 3 reveals  that  in  short  term  clock I1 by 
itself is about 8 dB better  than  the  Time-Kalman 
time  scale.  This  analysis  subsumes  that  the  time 
scale  should be  based on all  of the  available  data 
from  the  clock  intercomparisons  as  provided by  the 
Kalman  Filter  and  its  extrapolation up to  the  next 
measurement. In effect,  this  analysis  assumes that 
TIME  errors  should be  minimized regardless of the 
consequences on FREQUENCY  stability. 
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FIG. 3, ALLAN VARIANCES OF T I M  XALES 

IV. Time  Kalman vs. Frequency  Kalman 

There is a very important,  fundamental and 
philosophical  distinction  to  be  made  between  time 
and  frequency  as  it  relates  to  atomic  time  scales 
and  atomic  clocks.  Frequency is the  fundamental 
quantity  in  atomic  clocks.  It  can  be  well  modeled 
and  described by quantum  mechanical  processes, 
probability theory, and is the  intrinsic  natural 
process  upon  which  the SI second is based  as  given 
by  the definition  for  the  cesium  133  atom.  The 
energy  state  selection  technique,  signal-to-noise 
and  other  relevant  electronic  servo  conditions,  for 
example,  determine  the  statistical  properties  and 
the  averaging  time  necessary  to  measure  a 
particular  quantum  state  with  a  certain  level  of 
precision.  In addition, because  of  the  good  models 
that  have been developed  one can evaluate  the 
systematic  uncertainties and develop  a list of 
uncertainties  associated  with  the  realization of an 
absolute  frequency per some natural  resonance 
phenomenon in  an  atom. Because of the  above,  the 
General  Conference  of  Weights and Measures  (CGPM) 
in 1967 developed  the  current  definition  for  the 
second -- as  mentioned  above.  Independently 
different  laboratories  can  realize  the  SI  second 
without  communication  with  one  another  strictly 
based  on  fundamental  physical  processes.  When 
these  clocks  are  compared  they  should  agree  within 
the  uncertainty  error  budgets  associated  with  each 
experimental  determination of the  SI  second.  This 
is currently  the  case  between  the  four  fundamental 
primary  frequency  standards  which  contribute  to  the 
determination  of  the  rate of TAI. These  standards 
are  located  at NBS, NRC, PTB  and RRL, and  are 
independent  and  agree  to  within  their  accuracies 
(less than or equal  to  about 1 part in 10' 3). 

In  contrast it  is impossible to do the same with 
time. The  time  from  a  time  scale is typically 
dependent  on  three  things: 1) an  arbitrary  origin 
(date)  from  whence  seconds  are  accumulated; 2) the 
particular  algorithm  used  to  average a set of 
clocks  used for this  accumulation  of  seconds;  and 
3 )  a periodic  frequency or rate  calibration  with 
either  a  primary  standard or with  a  commercial 
standard  that  may  be  used in  the  composition of the 
scale.  Therefore,  the  time so generated is an 
artifact of some  arbitrary  epoch  (beginning point), 

plus  some  arbitrary  algorithm  and  plus  the 
integrated  time  errors  from th- frequency 
calibration  inaccuracies.  Whereas  independent 
frequency  standards will agree  within  some  error 
budget,  the  time  difference  between  independent 
time  scales  will be  unbounded. We can speak of the 
natural  resonance  frequency of quantum  mechanical 
transition, but  the  natural  time  of  same  has no 
neaning! 

Therefore,  as  one  applies  Kalman  filter  theory 
given  these  philosophical  and  physical  differences, 
the  idea of optimizing  the  Kalman  parameters  around 
some  natural  resonance  frequency  has  both  intuitive 
and  strong  physical  meaning; in contrast  setting 
optimum  Kalman  parameters  to  minimize  the  time 
error is an artifact, is artificial and has no 
analogous  physical  meaning.  Since  the  frequency 
Kalman  gives  better  short-term  stability  for  an 
arbitrary  set of clocks and is apparently 
comparable to the  time  Kalman in long term, and 
since  the  frequency  Kalman  has a more  sound 
physical  basis  the  frequency  Kalman  would  appear  to 
be  the  better  approach in  the generation  of  atomic 
time  scales.  To  date,  no  one is using  this 
approach.  The  National  Bureau  of  Standards  is  in 
the  development  process  evaluating  such  an 
algorithm and doing  experimentation  to  compare it 
with  the  current  methods  of  generating  time. 
Should  the  experiment  corroborate  the  theory  and 
above  argument,  the plans  are  to  change  the 
official  algorithm for the  generation  of  atomic 
time.  TA(NBS),  at the  National  Bureau  of  Standards 
to a  frequency  Kalman  approach. 

If a person's  task were  to  synchronize  a  secondary 
clock  to some primary clock, then  th? Time-Kalman 
approach  would  be  better C61. If frequency 
stability  were  the  principal  concern,  then  the 
Frequency-Kalman  approach  may  be  better. 

V. Alternatives 

Including  the  "TIME"  Kalman  filter  discussed  above, 
this  paper  considers  four  alternatives: 

1. 

2. 

3. 

4. 

Time-Kalman,  discussed  above. 

Linear  slewing  of  the  scale  time fron 
forecast  to  forecast  as  obtained  using 
the  Time-Kalman. 

Forming a new  time  scale  as  the 
(discrete)  integral  of  the  frequency 
elements  obtained  from  the  Time-Kalman. 

A complete  re-casting of the  Kalman  model 
in terms of frequency  rather  than time. 
The  underlying  model  of  white  FM  and 
random walk  FM  would  still  be  retained. 
The  time  scale,  then,  would be realized 
by integration  of  the  estimated  frequency 
elements of the  new  Frequency-Kalman 
filter.  The  measurement  data  would  be 
exactly  the  first  difference  of  the  saxe 
time  data used  in  the  Time-Kalman 
(divided  by T). 

Figure 1 depicts  the  type  of  instabilities  one 
should  expect  from  option 1 ,  the simple  Time- 
Kalman. Figure 4 uses the  same  data  as for Fig. 1, 
but slews  the  correction  to clock #l from  the 



forecast  made  at the previous  measurement to the 
forecast  for  the  next  measurement, T seconds in 
advance.  That  is,  after  completing  a  current 
measurement,  one  can  forecast  the  time  element of 
the  clock 61 state vector for  the  next  neasurement, 
T seconds  hence.  Knowing  what  the  last  forecast 
was for  the  current  point  allows  one  to  calculate a 
slewing  rate to  apply  to  the  clock #l data to reach 
the new  correction  value. 
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S ImRATED CLOCK  ERROR K E M D  TO  NEXT FORECRST 
(Optlon 2 )  

The  state vector  for  the  ensemble of clocks 
includes  the  frequency  eleaent  in  addition  to  the 
time  element  discussed  in  the  first  two  options. 
One  can  sum  up  these  frequency  corrections  (and 
multiply  by T) for  the  clock  with  the  best 
short-term  stability (clock #l, for  the  current 
example). Figure 5 displays  the  results  of  these 
calculations  for  the  same  exact  data as  used  for 
Figs. 1 and 4. Note  that  the  Time-Kalman  data  and 
computations  are all  the same  for  options 1, 2, and 
3 .  The  differences  are  in  what  one  does  with  the 
various  elements  of  the  state  vector  and  the 
transition  matrix, in making  forecasts. 

Option 4, above, is a  more  substantive  change. 
Starting  with  the  same  clock  model  of  white FM and 
random  walk FM, one  can  show that a  Frequency- 
Kalman  model  can  be  written in the  form: 

where Y(t)  is the  frequency  element  and Z(t) is a 
dummy  variable  needed  for  the  model  but  without any 
obvious interpretation. Z(t) is essential  for  the 
generation of the  random  walk  FM  component. 

The H(t)-matrix is the  same as before  since  the 
first  element  is now frequency  rather  than  time. 

The  measurement  input  data  is  now  frequency  rather 
than  time.  Each  of  the M - l  measurements is of the 
form : 

Wn(t) = ( Xn(t+T ) - Xn(t) ) 1 7 

where Wn(t) is the  FREQUENCY  measurement  for  the 
n-th clock deduced  from  the  exact  same  data as used 
in the  Time-Kalman.  The Q(t)  matrix  is 3150 

unchanged  except  the  factor T is replaced by 1 / ~ .  

As in  option 3, option I( uses  the  discrete 
summation of the  Frequency  forecast  of  the  state 
vector  (multiplied by T) to  obtain  an  estimate  of 
the clock's time error. Figure 6 displays  the 
results of  the  Frequency-Kalman  and  integrator 
using  the  first  difference of the  same input  data 
as in  Figs. 1, 4, and 5 .  Figure 7 is an  overlay on 
Fig. 2 of the Frequency  stability  obtained  using 
options 1 and 4 (Time-Kalman  and  Frequency-Kalman). 
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VI. Comparisons of Time  Scale  Algorithms 

In  long-term  there  seems  little to differentiate 
between  the four  algorithms,  although  there is a 
slight  indication  that t he  Frequency-Kalman  (option 
4) might  be  a  fraction of a  dB  better  than  the 
others.  It is clear  that  t  e  various  scales  could 
depart  asymptotically as T~~~ from each other, but 
the  same is true for  any  one of the  time  scales 
relative  to  some  "ideal"  scale. For short 'imes 
( < 7)the four options  have  about  the  relationships 
in  Table 1: 

TABLE l .  

Opt lon   Shor t -Term Nolse L e v e l  
Above Frequency-Kalman 

1. Time  Kalman .B d e  

2. Tlme-Kal ( s l e w  tlme) +6.5 d B  

3. Time-Kal ( r r e q .  Intes) 4 dB 

4. Frequency-Kalnan 0 d B  

As a  more  important  application  of  tiese Kalir?n 
algorithms,  we  applied  them  to  a  sim3lation  of  the 
NBS time  scale.  From  other  studies :Jones, et 
al.], we have good estimates of the jrnite  FM  anc 
random  walk  FM  components of each  clocX. Tabie 7 
lists  standard  deviations ( 0 ' s )  for  both  noise 
types  for  each  clock. The best  clock  in  short-term 
was  chosen a s  the  reference  clock,  clock  number 1. 
These  values  are in units of nanoseconds and 
correspond  to  a  time  interval of  one day. To 
obtain  values  corresponding  to one second, the 
sigmas f o r  white FM should  be  divided  by 
(864GG)"2 and  the  random  walk  sigmas  by 
( 8 6 4 0 0 ) 3 ' ~ :  

TABLE 2. NBS T l n e  Scale  Parameters 
(Unlts ns. Dally  asi is) 

Clock NO. i lh l te  FM Random  Walk FM 

I 
2 
3 

4 
5 
6 

7 
8 
9 

10 
l1 

0.5 

0 . 6  
2.E 

9 . 1  
9 . 9  
9 .  11 

1 4 . 3  
11.4 

4.7 

11.4 
2.3 

0 .55  
3.e4 
0.83 

1.7 
3.0 

1.9 

0.86 

0.55 
2 . 3  

0.55 
2.1 

Figure 8 represents  the  square  root  of  the 
t3eoretizal  Allan  variances  corresponding  to  the 
paraneters  listed  in  Table 2. Ne simulated  the 
noises for each of the  eleven  clocks  and  formed  the 
differences  between  the  reference  clock (No. 1) and 
each  of  the  other  clocks  corresponding  to  typic31 
time  scale  data.  This  simulated  data  w3s  used  by 
the  Time-Kalrnan  and  the  Frequency-Kalman to define 
two  (simulated)  time  scales.  Since  the  data of 
each  simulated  clock  was knoun, the  absolute  scale 
error  for  each  simulated scale  was  calculated. 
(This  is  the  value of simulation.)  Figure 9 
results  from  the  calculated Allan variances  for 
each  simulated  scale.  Surprisingly,  the  turn-on 
transients  for  the  time  Kalman  persisted for about 
one  (simulated)  month. The data  for  Figs. 9 and 10 
come  from  sufficiently  long  averages  to  minimize 
the  transients. 
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The  upper  curve  in  Fig. 9 corresponds  to  the 
typical  time  Kalman  (option 1, above),  while  the 
lower  curve  corresponds to the  frequency  Kalman 
(option 4). Figure 10 superimposes  Figs. 8 and 9 
The  integral of the  frequency  state of the 
Time-Kalmm  (option 3) is indistinguishable  from 
the  Frequency-Kalman  (option 4 ) .  

The  fundamental  conclusion is that  either of the 
Frequency-Kalnm's  (option 3 or  4 )  offers  about a 
10 dB  improvement  to  the  NBS  time  scale  over  the 
Time  Kalman  (option 1) for  sanple  times  shorter 
than  a  few  days. 
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